If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+96x-196=0
a = 1; b = 96; c = -196;
Δ = b2-4ac
Δ = 962-4·1·(-196)
Δ = 10000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{10000}=100$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-100}{2*1}=\frac{-196}{2} =-98 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+100}{2*1}=\frac{4}{2} =2 $
| -3(7x+2)=-21x-6 | | 3x+24=2x | | 4.05p+14.40=4.40(p+3) | | 405p+14.40=4.40(p+3) | | 5c+4-8=13 | | 3(b-2)=2b(b+1) | | 12t-5t=35 | | 1/4(8t-9)=t+9/8 | | b-8/8=b-9/2 | | 9x-9x2=5x-6 | | (b-8)/8=(b-9)/2 | | 140+.3x=70+.8x | | -2(x+3)-x-4=-3(x+4)=2 | | -2(x=3)-x-4=-3(x+4)=2 | | -45.5=-5.85t-4.9t^2 | | 72=7(z-3) | | (q+-5)/3=8 | | .09=(5500+900-x)/x | | 4t+8=3t+12 | | 64=13y-5 | | 910-780=0.03x | | Y=-1.468x+134.2 | | 2÷3×y=8 | | 15+8+1.25b=35 | | -15s=255 | | 10-2x=-5x-5 | | f+114=892 | | 20(5+2a)=100+2a | | 2x5/3-10=0 | | j+552=331 | | 2x+6=11x-7/5 | | 20+15+0.65x=45 |